본문 바로가기
ੈ✩‧₊˚Computer Science/이산수학

관계(Relations) / 관계의 특징(Relations and their properties)

by 샨샨 2020. 11. 24.
반응형

이항관계(binary relations)

정의 1 : A와 B라는 집합이 있을 때, A로부터 B까지의 이항 관계는 AXB의 부분집합이다. 

def 1 : Let A and B be sets. A binary relation from A to B is a subset of AXB

 

예시) A={0,1,2} B={a,b}

 

  • A X B = {(0,a), (0,b), (1,a), (2,b)}
  • set A 와 B의 관계를 graphically 하게 표현할 수 있다.
  • 관계는 함수보다 더 general한 표현이다.

 

 

 

정의 2: A라는 집합에 대한 관계는 A X A 의 부분집합이다.

def 2 : a binary relation on a set A is a subset of A X A

 

예시) A={1,2,3,4} R={(a,b) | a divides b}

답)

 

문제) 만약 n개의 element가 있는 set은 몇개의 관계(relation)을 가질까?

답) A X A 가 n의 제곱개의 원소를 가지니까 2의 n제곱 승이 정답

relation의 종류

1. 반사 관계(reflective relation)

정의 :모든 a A 에 대해 (a,a) ∈R인 관계

def : R is reflective if (a,a)∈ R for every element a∈A

- A가 공집합일때도 reflective relation 이다.

 

반사 관계 / 반사 관계 아닌 것

주의해야할 점은 반산관계가 아니라고 해서 비반사관계거나, 비반사관계가 아니라고 해서 반사관계는 아니다.

 

2.대칭관계(Symmetric relation)

정의 : 어떤 a,b ∈ A에 대해 (a,b) ∈R이면 (b,a) ∈R인 관계

def : R is symmetric iff (b,a) ∈ R whenever (a,b) ∈ R for all, a,b ∈A

예시)

3.반대칭관계(Antisymmetric relation)

정의 : 어떤 a,b ∈ A 에 대해 (a,b) ∈ R 일 때, (b,a) ∈R이면 a=b인 관계

def : R is antisymmetric when (a,b) ∈ R, (b,a) R only if a= b for all a A, b A 

예시)

4.추적관계(transitive relation)

정의 : (a,b) ∈ R , (b,c) ∈ R 일 때, 모든 a,b,c A에 대하여 (a,c) R이다.

def : R is transitive if whenever (a,b) ∈ R and (b,c) R then (a,c) ∈R, for all a,b,c ∈ A

예시)

 

5. 구성 관계(composition relation)

정의 : R 은 set A와 set B의 관계, S는 set B와 setC의 관계이다. R과 S의 구성관계는 set A 에서 setC의 관계이다.

 

Theorm 1 . The relation R on a set A is transitive iff R^n ⊆ R for n = 1,2,3...

 

반응형